Random differential inclusions depending on a parameter

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution inclusions of the subdifferential type depending on a parameter

In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field F depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set S(λ) is both Vietoris and Hausdorff metric continuous in λ ∈ Λ. Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.

متن کامل

Existence Results for Fractional Differential Inclusions with Multivalued Term Depending on Lower-Order Derivative

and Applied Analysis 3 The results of this paper can easily to be generalized to the boundary value problems of fractional differential inclusions 1.4 with the following integral boundary conditions: a1x 0 b1 cDγx 0 ) c1 ∫T

متن کامل

Themes on Differential Inclusions (

An ordinary differential equation x = f (t, x(t)) (ODE) uniquely assigns the time derivative x (t) = d dt x(t) as a function of t and x. A differential inclusion x ∈ F (t, x(t)), (DI) on the other hand, only requires that the derivative x be inside a given set F (t, x) ⊂ R n. Therefore, given an initial condition x(0) = ¯ x, one can usually find several solutions of (DI). f(x) x _ x _ x x F(x) ...

متن کامل

Existence of Triple Positive Periodic Solutions of a Functional Differential Equation Depending on a Parameter

where a= a(t), h= h(t), and τ = τ(t) are continuous T-periodic functions, and f = f (u) is a nonnegative continuous function. We assume that T is a fixed positive number and that a = a(t) satisfies the condition ∫ T 0 a(u)du > 0. The number λ will be treated as a parameter in both equations. Functional differential equations with periodic delays appear in a number of ecological models. In parti...

متن کامل

Positive Periodic Solutions of Nonautonomous Functional Differential Equations Depending on a Parameter

where a = a(t), h = h(t), and τ = τ(t) are continuous T-periodic functions. We will also assume that T > 0, λ > 0, f = f (t) as well as h = h(t) are positive, ∫T 0 a(t)dt > 0. Functional differential equations with periodic delays appear in a number of ecological models. In particular, our equation can be interpreted as the standard Malthus population model y′ = −a(t)y subject to perturbation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1991

ISSN: 0022-247X

DOI: 10.1016/0022-247x(91)90360-c